Discussion and Consideration of Hydrologic Conditions

A Presentation to GMA 14 Joint Planning Interlocal Agreement Participants

June 26, 2019

AQUIFER

HANSILION

Presented By:

Objectives

Review Schedule

- Hydrologic Conditions
- Paths Forward on DFC Delineation

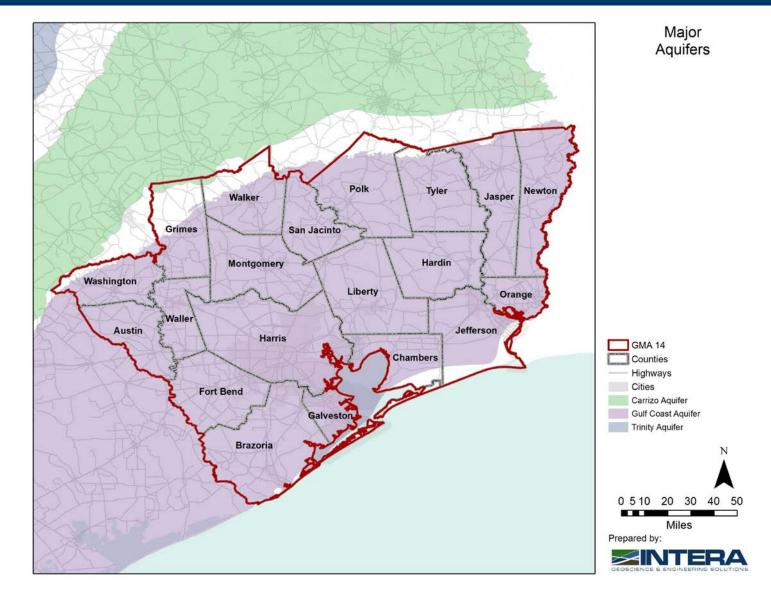
Consideration of Factors

- Aquifer uses or conditions January 30, 2019
- Water supply needs and management strategies March 27, 2019
- Hydrological conditions Today
- Other environmental impacts
- Impact on subsidence
- Socioeconomic impacts
- Impact on private property rights
- Feasibility of achieving the DFC
- Any other relevant information

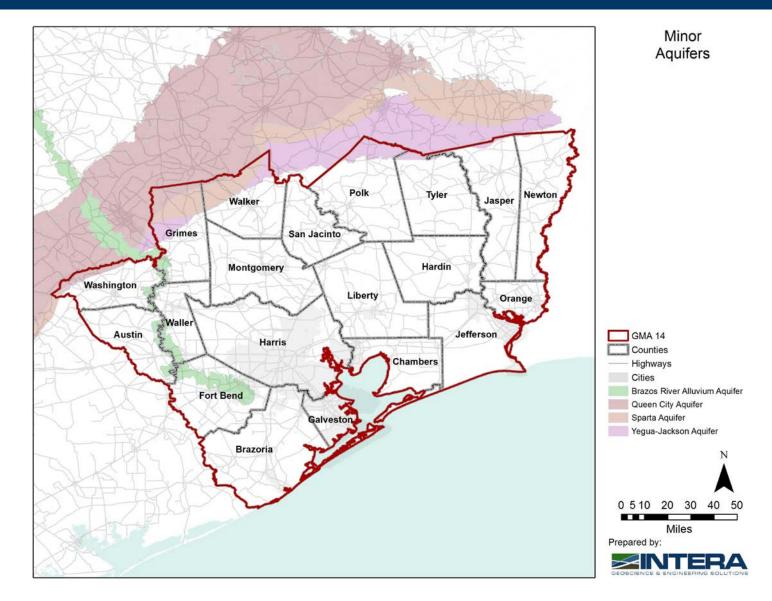
Current Schedule

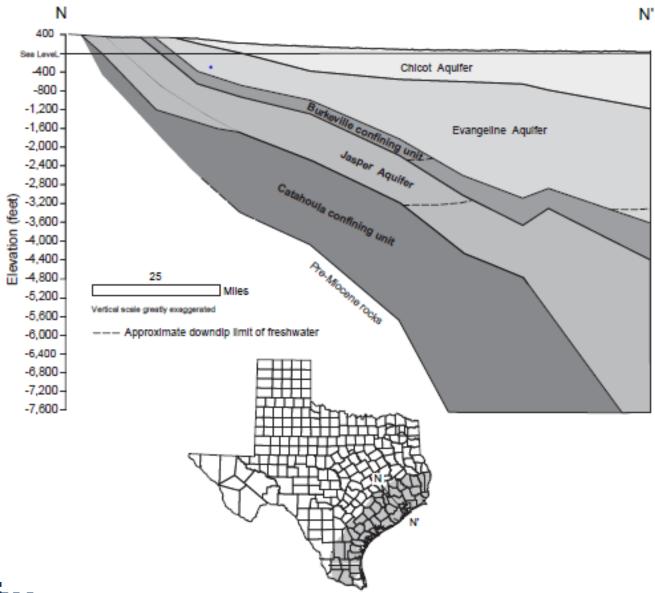
		2019			2020					_	2021																			
Main Joint Planning Topics for Meetings	January	February	March	April	Мау	June	July	August	September	October	November	December	January	February	March	April	Мау	June	July	August	September	October	November	December	_	January	February	March	April	Мау
Factor 1: Aquifer Uses and																														
Conditions																														
Factor 2: Water Supply Needs																														
and Management Strategies						_																								_
Factor 3: Hydrological																														
Conditions																														_
Factor 4: Environmental																														
Impacts																									l					
Factor 5: Impact on Subsidence																														
Factor 6: Socioeconomic																														
Impacts																														
Factor 7: Private Property																														
Interests and Rights																														
Factor 8: Feasibility of																														
Achieving the DFCs																														
Factor 9: Other Relevant																														
Information																														
Balancing Test Model Runs																														
Selection of Model Runs and																														
Metrics for Evaluation																														
Review of Model Run Results																														
Draft Explanatory Report					ĺ																				1					
Development																														
Propose DFC(s) for Adoption																									1					٦
(Deadline May 1, 2021)				1		[
Proposed Meeting Dates	*		*		*	-	*		*		*		*		*		*		*		*		*		•	*				

Requirement in statute


- -hydrological conditions, including for each aquifer in the management area the total estimated recoverable storage <u>as provided by the executive administrator</u>, and the average annual recharge, inflows, and discharge;
- -This was added with SB 660 in 2011, requiring TWDB to develop estimates of water in storage
- Reading between the lines:

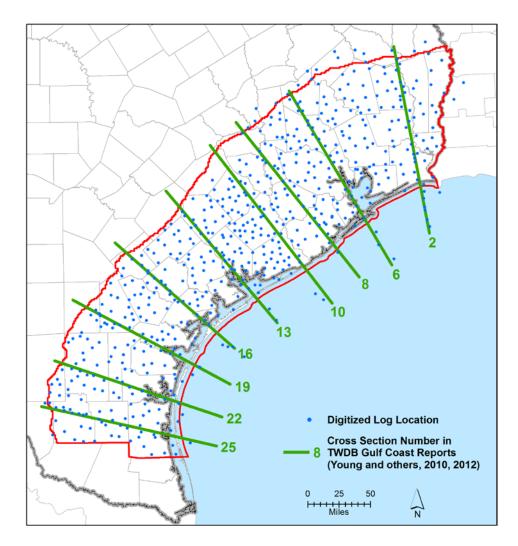
-Try to understand how the aquifers work


Major Aquifers



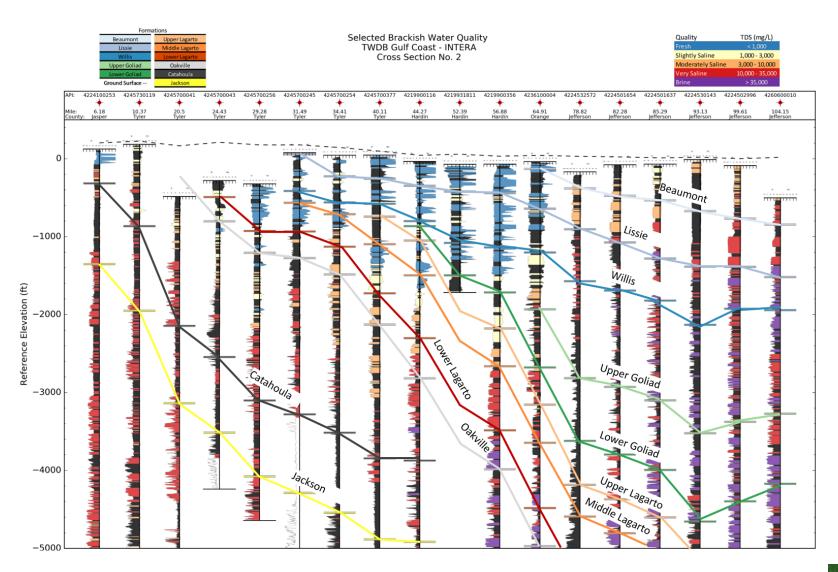
Minor Aquifers

Gulf Coast Aquifer Conceptual Cross-Section

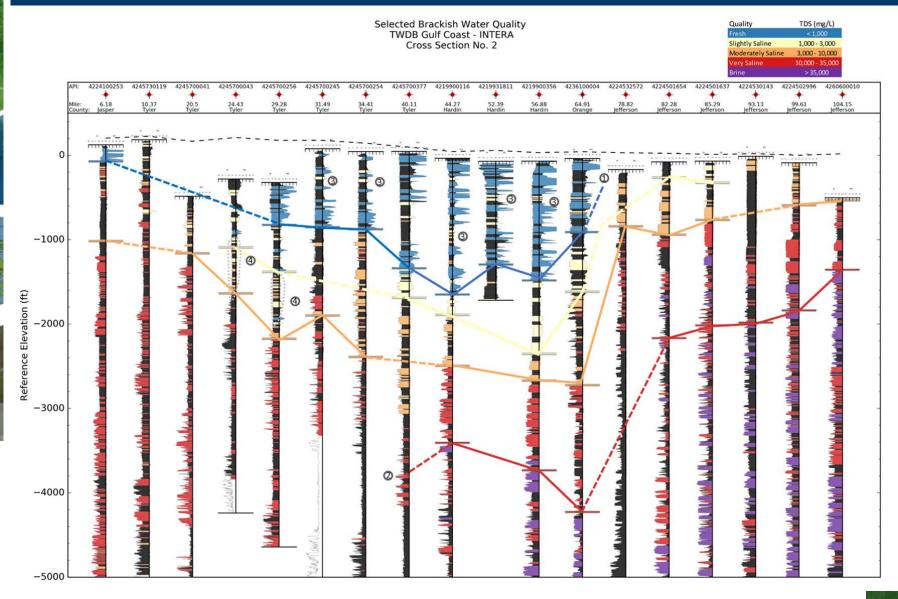


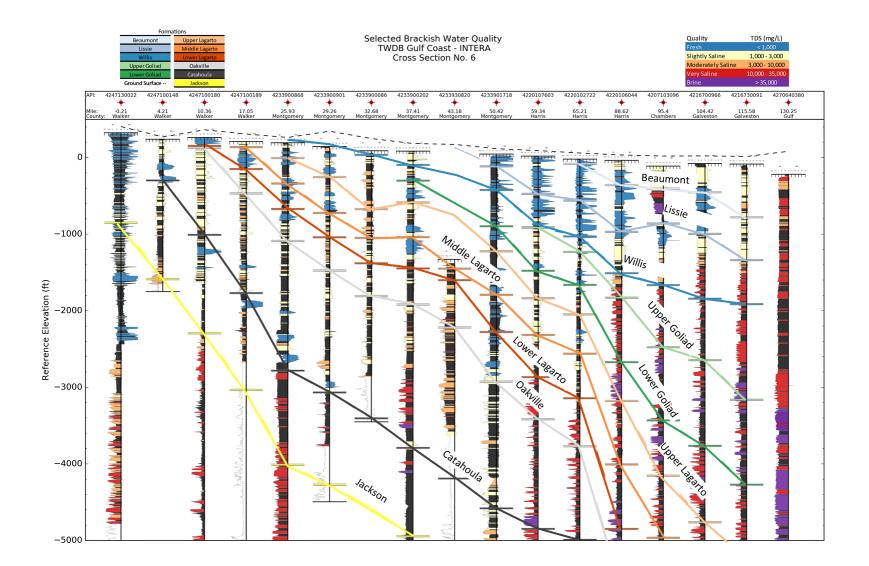
Gulf Coast Aquifer Stratigraphic Section

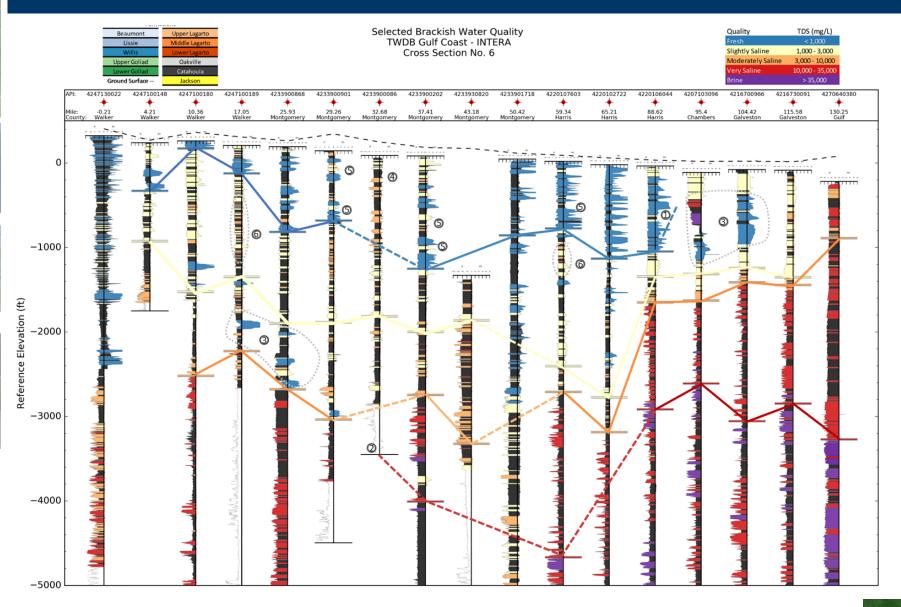
ERA	Epoch		Est. Age (M.Y)	Geologic Unit	Hydrogeologic Unit	
	D	leistocene	0.7	Beaumont		
		reistocene	1.6	Lissie	AQUIFER	
Г		Pliocene	3.8	Willis		
-		11.2		Upper Goliad	EVANGELINE	
Cenozoic		Late		Lower Goliad	AQUIFER	
	ene		-	Upper Lagarto	1	
	Miocene	Middle	17.8	MiddleLagarto	BURKEVILLE	
	2		-	Lower Lagarto	JASPER	
		Early	24.2	Oakville	AQUIFER	
ſ				Frio	CATAHOULA	
		Oligocene	34	Vicksburg	CATAHOULA	

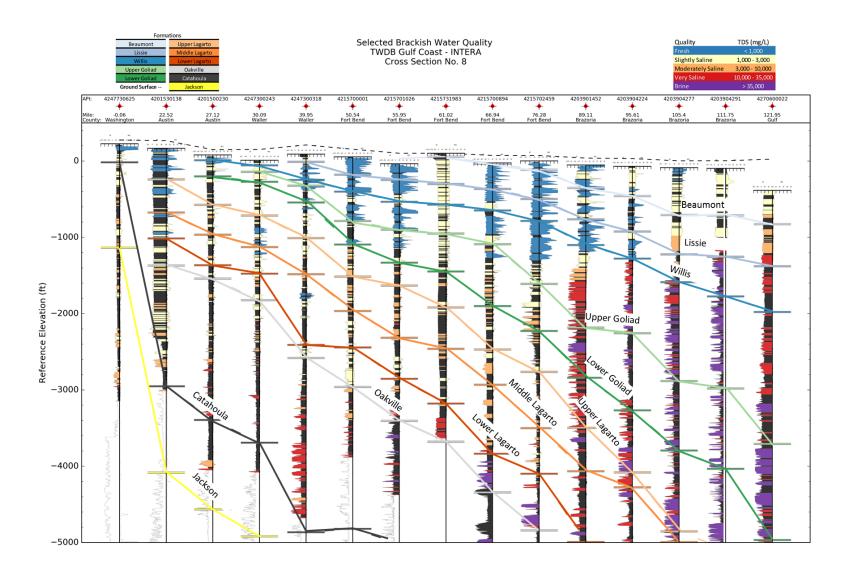


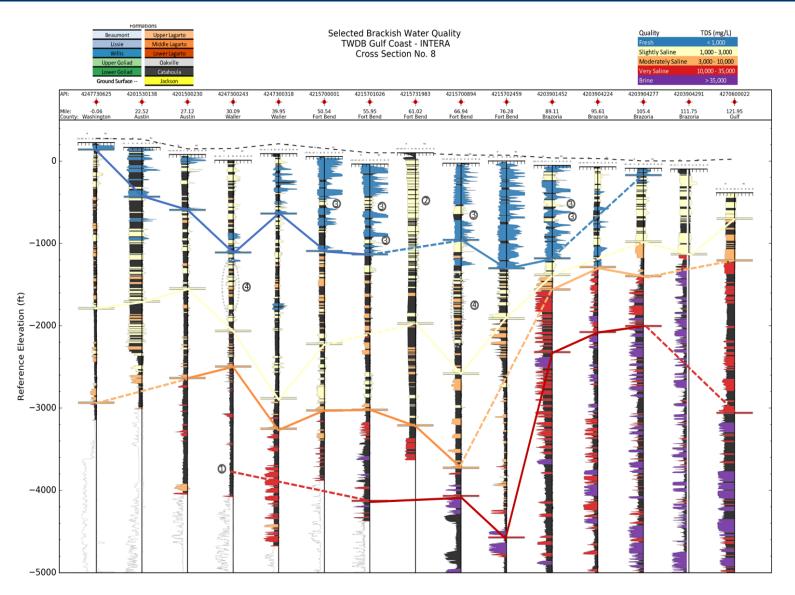
Gulf Coast Aquifer Cross-Section Locations

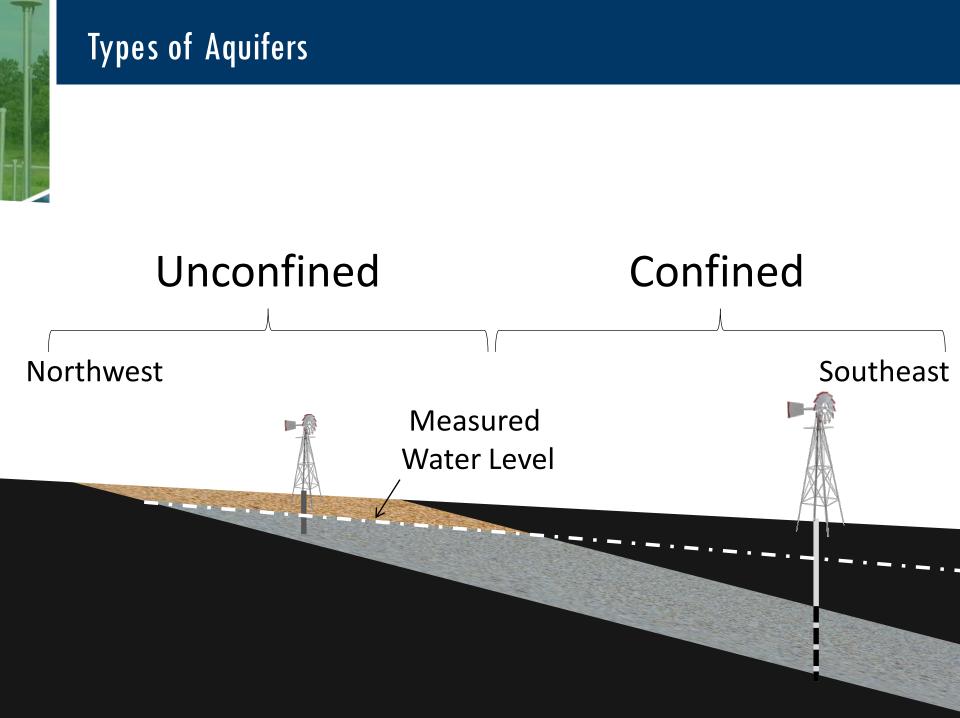


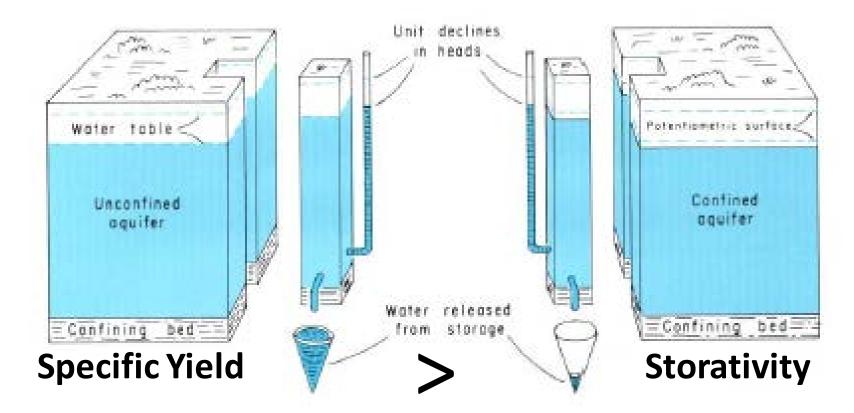

Young and others (2016)





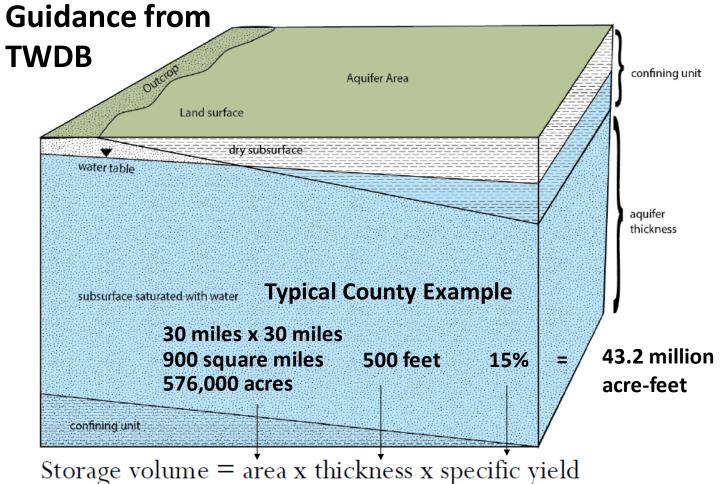


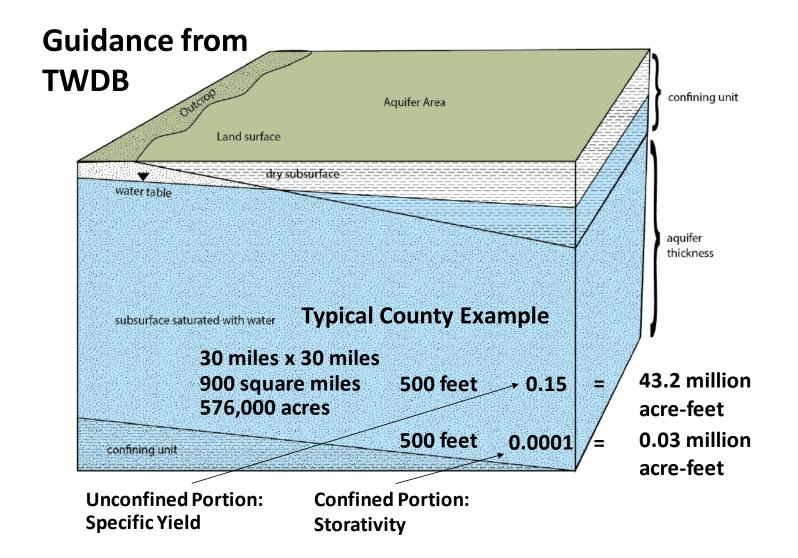


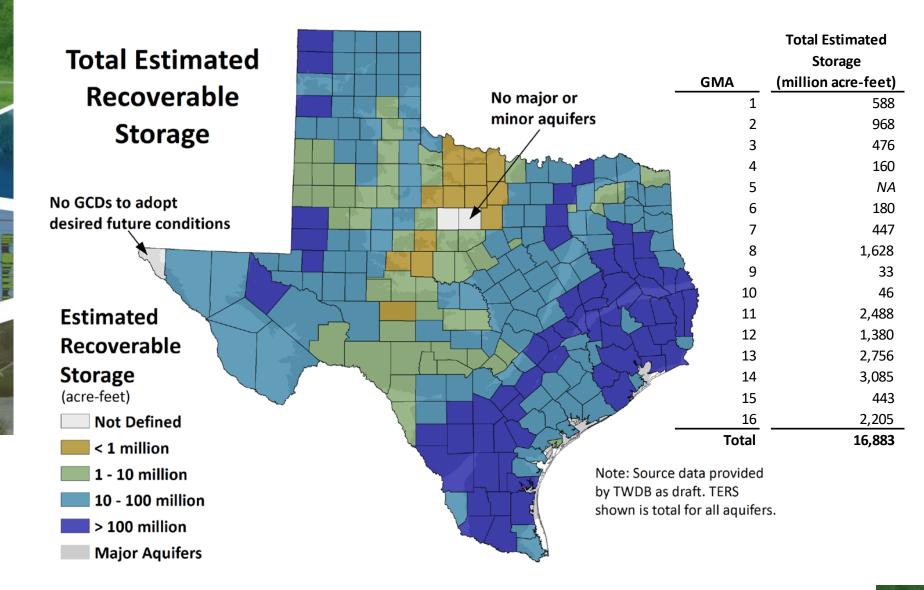

Total Estimated Recoverable Storage — The estimated amount of groundwater within an aquifer that accounts for recovery scenarios that range between 25% and 75% of the porosity-adjusted aquifer volume

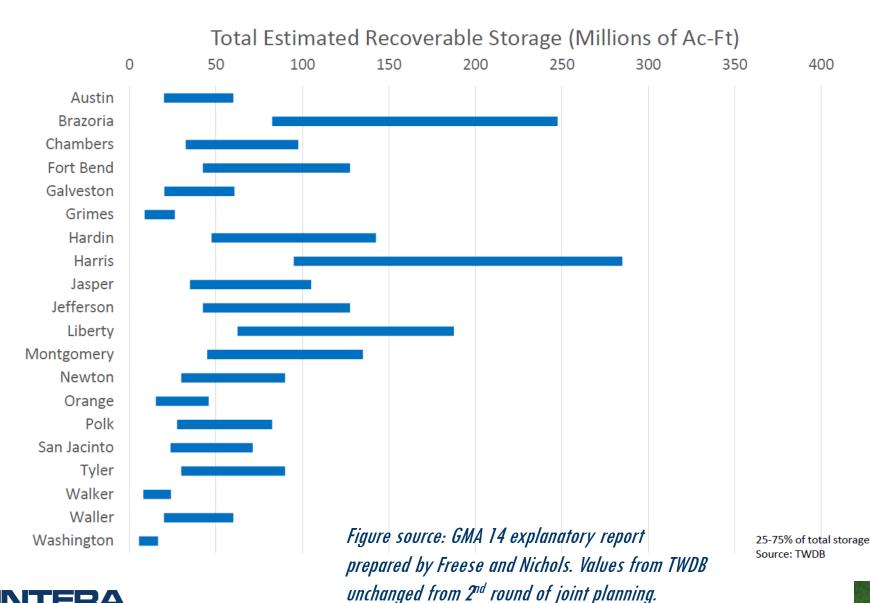
Texas Administrative Code Sec. 356.10

Unconfined vs. Confined Storage

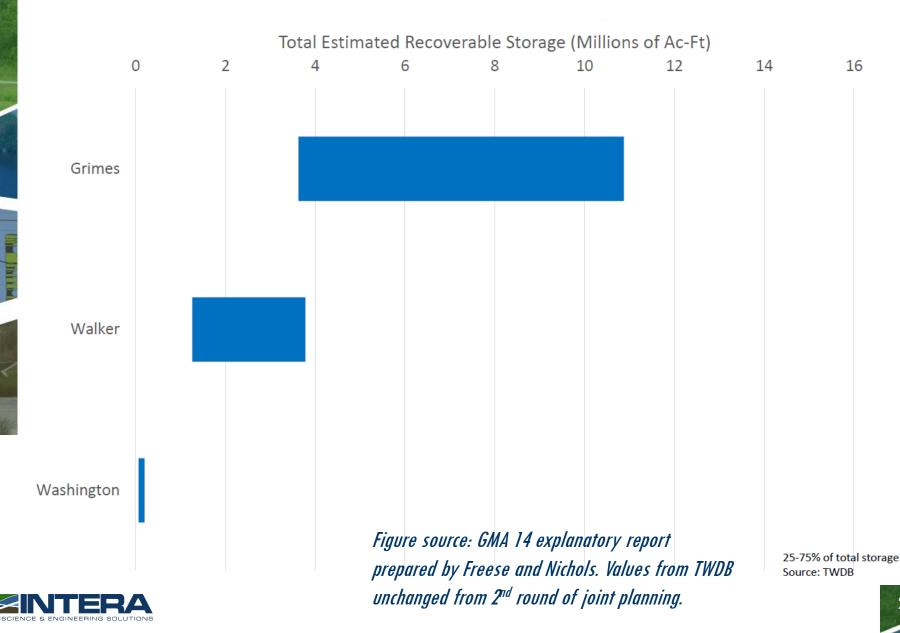

Takeaway: In theory, each foot of drawdown yields much more water when an aquifer is unconfined than when it is confined. From Heath (1983)

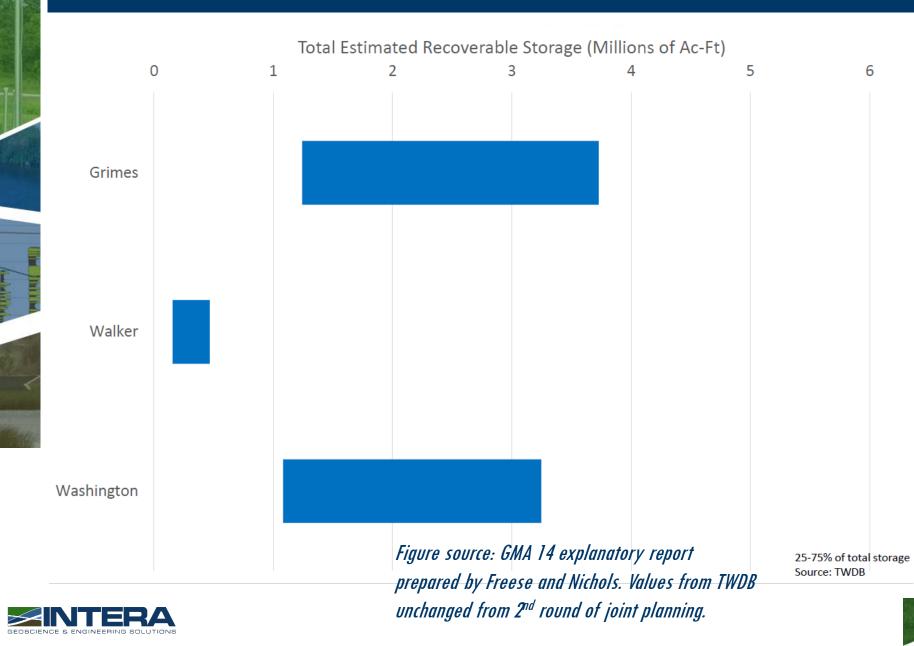

(Plus some for the confined storage)


(Plus some for the confined storage)



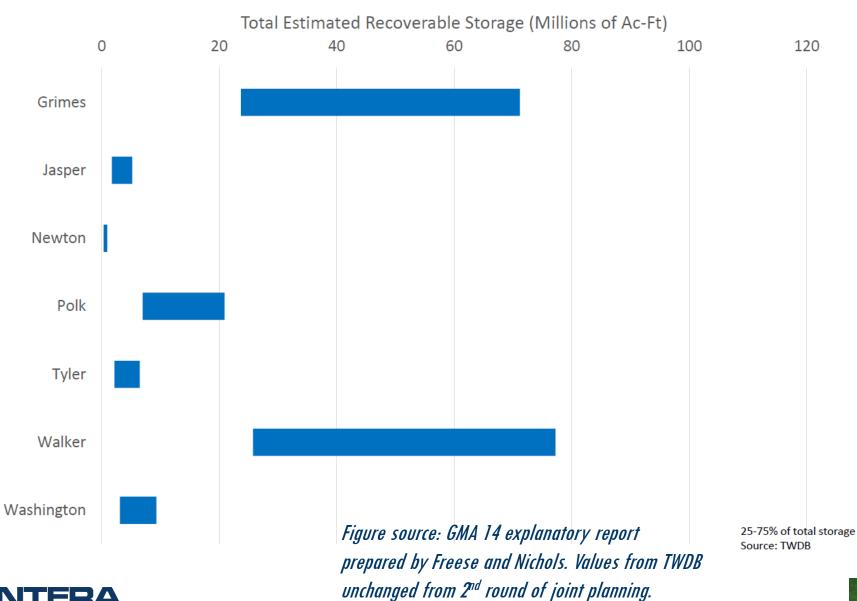
TERS Across Texas


Gulf Coast Aquifer — Total Estimated Recoverable Storage



24

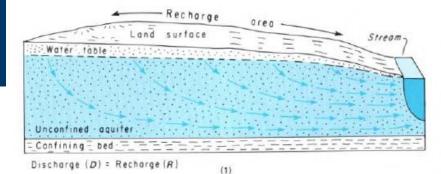
Carrizo-Wilcox Aquifer — Total Estimated Recoverable Storage

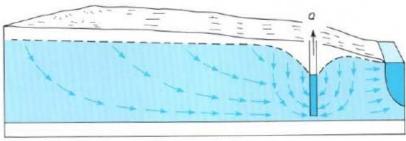

Queen City Aquifer — Total Estimated Recoverable Storage

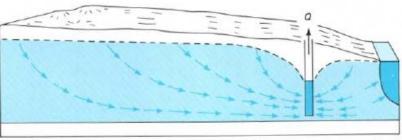
Sparta Aquifer — Total Estimated Recoverable Storage

Yegua Jackson — Total Estimated Recoverable Storage

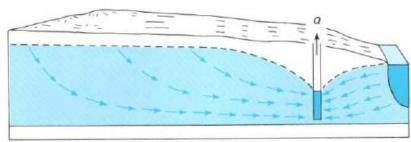
28


TERS - Limitations


- No consideration given to:
 - Aquifer water quality
 - Water levels dropping below pumps
 - Land surface subsidence
 - Degradation of water quality
 - Changes to surface water-groundwater interaction
 - Recharge
 - Practicality/economics of development
- As calculated, the 25% to 75% TERS range represents the approximate fraction of total storage in the aquifer that is in the water-producing zones (e.g. sands), not what is "recoverable" from those zones.
- TERS is a simple volumetric calculation that does not account for many important factors that limit groundwater production


Water Budgets

- Budgets posted for each aquifer and county
- Aquifers work as systems
- Consideration of average conditions is required
- Most useful part of water budgets — changes due to stress



Withdrawal (Q) = Reduction in storage ($\triangle S$) (2)

Withdrawal (Q) = Reduction in storage ($\triangle S$) + Reduction in discharge ($\triangle D$) (3)

Withdrawal (Q) = Reduction in discharge ($\triangle D$) + Increase in recharge ($\triangle R$)

Water Budgets

	Waller Coun	ty		
Inflow	Chicot	Evangeline	Burkeville	Jasper
Recharge/Stream Loss (GHB)	24,327	775	_	_
Storage	13,993	1,525	82	928
Leakage From Upper Unit	_	24,350	88	35
Leakage From Lower Unit	1	—	—	_
Lateral Flow From Austin	1,573	3,271	3	422
Lateral Flow From Fort Bend	847	428	0	42
Lateral Flow From Grimes	74	1,593	2	852
Lateral Flow From Harris	193	892	1	364
Lateral Flow From Montgomery	76	190	0	_
Lateral Flow From Washington	_	942	5	245
Total Inflow	41,084	33,965	182	2,888

Outflow	Chicot	Evangeline	Burkeville	Jasper
Wells	803	24,992	—	169
Evapotranspiration/Stream Gain (GHB)	13	960	_	_
Storage	328	306	74	2
Leakage To Upper Unit	—	1	142	76
Leakage To Lower Unit	24,350	88	35	—
Lateral Flow To Austin	437	527	0	71
Lateral Flow To Fort Bend	7,311	1,686	1	70
Lateral Flow To Grimes	2	287	1	203
Lateral Flow To Harris	6,854	4,044	3	1,113
Lateral Flow To Montgomery	987	1,027	1	1,166
Lateral Flow To Washington	—	188	1	18
Total Outflow	41,084	34,107	258	2,889
Inflow - Outflow	0	-142	-76	0
Storage Increase (+)/Decrease(-)	-13,666	-1,218	-8	-926

Water Budgets — Recharge and Pumping

	Waller Coun	ty		
Inflow	Chicot	Evangeline	Burkeville	Jasper
Recharge/Stream Loss (GHB)	24,327	775	_	_
Storage	13,993	1,525	82	928
Leakage From Upper Unit	—	24,350	88	35
Leakage From Lower Unit	1	_	_	_
Lateral Flow From Austin	1,573	3,271	3	422
Lateral Flow From Fort Bend	847	428	0	42
Lateral Flow From Grimes	74	1,593	2	852
Lateral Flow From Harris	193	892	1	364
Lateral Flow From Montgomery	76	190	0	_
Lateral Flow From Washington	_	942	5	245
Total Inflow	41,084	33,965	182	2,888

Outflow	Chicot	Evangeline	Burkeville	Jasper
Wells	803	24,992	—	169
Evapotranspiration/Stream Gain (GHB)	13	960	—	—
Storage	328	306	74	2
Leakage To Upper Unit	—	1	142	76
Leakage To Lower Unit	24,350	88	35	—
Lateral Flow To Austin	437	527	0	71
Lateral Flow To Fort Bend	7,311	1,686	1	70
Lateral Flow To Grimes	2	287	1	203
Lateral Flow To Harris	6,854	4,044	3	1,113
Lateral Flow To Montgomery	987	1,027	1	1,166
Lateral Flow To Washington	—	188	1	18
Total Outflow	41,084	34,107	258	2,889
Inflow - Outflow	0	-142	-76	0
Storage Increase (+)/Decrease(-)	-13,666	-1,218	-8	-926

Water Budgets — Net Storage Change

	Waller Coun	ty		
Inflow	Chicot	Evangeline	Burkeville	Jasper
Recharge/Stream Loss (GHB)	24,327	775	_	-
Storage	13,993	1,525	82	928
Leakage From Upper Unit		24,350	88	35
Leakage From Lower Unit	1	_	_	_
Lateral Flow From Austin	1,573	3,271	3	422
Lateral Flow From Fort Bend	847	428	0	42
Lateral Flow From Grimes	74	1,593	2	852
Lateral Flow From Harris	193	892	1	364
Lateral Flow From Montgomery	76	190	0	_
Lateral Flow From Washington	_	942	5	245
Total Inflow	41,084	33,965	182	2,888

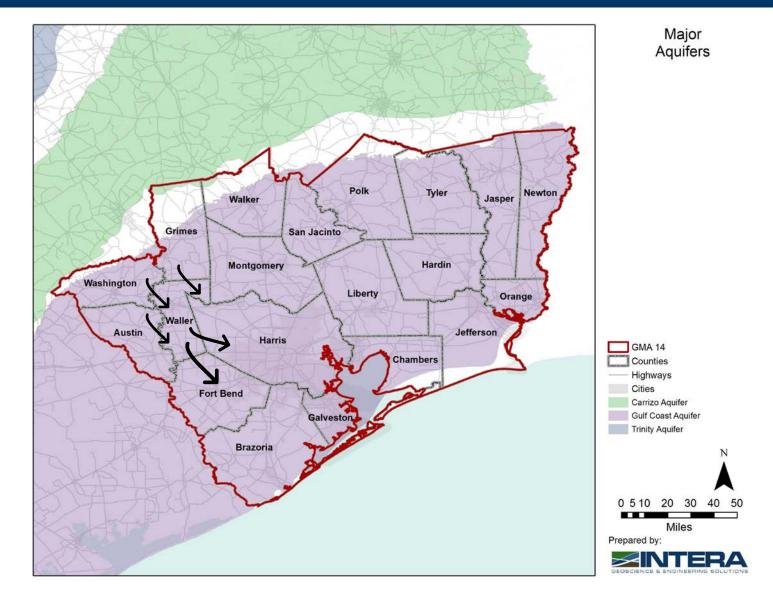
Outflow	Chicot	Evangeline	Burkeville	Jasper
Wells	803	24,992	—	169
Evapotranspiration/Stream Gain (GHB)	13	960	_	_
Storage	328	306	74	2
Leakage To Upper Unit	_	1	142	76
Leakage To Lower Unit	24,350	88	35	—
Lateral Flow To Austin	437	527	0	71
Lateral Flow To Fort Bend	7,311	1,686	1	70
Lateral Flow To Grimes	2	287	1	203
Lateral Flow To Harris	6,854	4,044	3	1,113
Lateral Flow To Montgomery	987	1,027	1	1,166
Lateral Flow To Washington	—	188	1	18
Total Outflow	41,084	34,107	258	2,889
Inflow - Outflow	0	-142	-76	0
Storage Increase (+)/Decrease(-)	-13,666	-1,218	-8	-926

Water Budgets — Vertical Flows

	Waller Coun	ty		
Inflow	Chicot	Evangeline	Burkeville	Jasper
Recharge/Stream Loss (GHB)	24,327	775	—	_
Storage	13,993	1,525	82	928
Leakage From Upper Unit	—	24,350	88	35
Leakage From Lower Unit	1	—	—	—
Lateral Flow From Austin	1,573	3,271	3	422
Lateral Flow From Fort Bend	847	428	0	42
Lateral Flow From Grimes	74	1,593	2	852
Lateral Flow From Harris	193	892	1	364
Lateral Flow From Montgomery	76	190	0	_
Lateral Flow From Washington	—	942	5	245
Total Inflow	41,084	33,965	182	2,888

Outflow	Chicot	Evangeline	Burkeville	Jasper
Wells	803	24,992	—	169
Evapotranspiration/Stream Gain (GHB)	13	960	—	_
Storage	328	306	74	2
Leakage To Upper Unit	_	1	142	76
Leakage To Lower Unit	24,3 <mark>50</mark>	88	35	_
Lateral Flow To Austin	437	527	0	71
Lateral Flow To Fort Bend	7,311	1,686	1	70
Lateral Flow To Grimes	2	287	1	203
Lateral Flow To Harris	6,854	4,044	3	1,113
Lateral Flow To Montgomery	987	1,027	1	1,166
Lateral Flow To Washington	—	188	1	18
Total Outflow	41,084	34,107	258	2,889
Inflow - Outflow	0	-142	-76	0
Storage Increase (+)/Decrease(-)	-13,666	-1,218	-8	-926

Water Budgets — Lateral Flows


	Waller Coun	ty		
Inflow	Chicot	Evangeline	Burkeville	Jasper
Recharge/Stream Loss (GHB)	24,327	775	—	_
Storage	13,993	1,525	82	928
Leakage From Upper Unit	—	24,350	88	35
Leakage From Lower Unit	1	_	—	_
Lateral Flow From Austin	1,573	3,271	3	422
Lateral Flow From Fort Bend	847	428	0	42
Lateral Flow From Grimes	74	1,593	2	852
Lateral Flow From Harris	193	892	1	364
Lateral Flow From Montgomery	76	190	0	_
Lateral Flow From Washington	_	942	5	245
Total Inflow	41,084	33,965	182	2,888

Outflow	Chicot	Evangeline	Burkeville	Jasper
Wells	803	24,992	_	169
Evapotranspiration/Stream Gain (GHB)	13	960	—	—
Storage	328	306	74	2
Leakage To Upper Unit	_	1	142	76
Leakage To Lower Unit	24,350	88	35	—
Lateral Flow To Austin	437	527	0	71
Lateral Flow To Fort Bend	7,311	1,686	1	70
Lateral Flow To Grimes	2	287	1	203
Lateral Flow To Harris	6,854	4,044	3	1,113
Lateral Flow To Montgomery	987	1,027	1	1,166
Lateral Flow To Washington		188	1	18
Total Outflow	41,084	3 <mark>4,10</mark> 7	258	2,889
Inflow - Outflow	0	-142	-76	0
Storage Increase (+)/Decrease(-)	-13,666	-1,218	-8	-926

Lateral Flows

Useful References

The Water Budget Myth Revisited: Why Hydrogeologists Model Bredehoeft (2005) <u>https://ngwa.onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2002.tb02511.x</u>

Another Water Budget Myth: The Significance of Recoverable Ground Water in Storage Alley (2007) https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1601&context=usgsstaffpub

Identification of Potential Brackish Groundwater Production Areas — Gulf Coast Aquifer System Young and others (2016) <u>http://www.twdb.texas.gov/publications/reports/contracted_reports/doc/1600011947_InteraGulf_Coast_Brackish.pdf</u>

GAM Task 13-037: Total Estimated Recoverable Storage for Aquifers in GMA 14 Wade and others (2014) http://www.twdb.texas.gov/groundwater/docs/GAMruns/Task13-037.pdf

Basic Groundwater Hydrology Heath (1983) https://pubs.usgs.gov/wsp/2220/report.pdf

Reviewed LSGCD Presentation on Approach to Management

- Focused on delineation of "common reservoir" for DFCs
- Lays out process for developing information to use in the delineation including consideration of current use, water level changes, storage, subsidence, projected future uses
- Common reservoir" approach for delineation may result in areas within the aquifer without DFCs

Approaches for Delineating DFCs

- Option 1: Proceed without changes to scope and approach
 - -No additional cost or time
- Option 2: Move DFC delineation discussion to end of process after evaluation of factors
 - -No additional cost, rearrange schedule
- Option 3: Follow process for delineating common reservoir prior to evaluation of factors
 - -Estimated additional \$24k, push back or compress schedule

Current Schedule

		2019											2020											_	2021						
Main Joint Planning Topics for Meetings	aniary	Eahriianu	March	April	May	June	July	August	September	October	November	December		January	February	March	April	Мау	June	July	August	September	October	November	December		January	February	March	April	Widy
Factor 1: Aquifer Uses and						Τ																							Т		
Conditions																															
Factor 2: Water Supply Needs																															
and Management Strategies																													\square		
Factor 3: Hydrological																															
Conditions																															
Factor 4: Environmental																															
Impacts																															
Factor 5: Impact on Subsidence																													1		
Factor 6: Socioeconomic																															
Impacts																															
Factor 7: Private Property																															
Interests and Rights																															
Factor 8: Feasibility of																															
Achieving the DFCs																															
Factor 9: Other Relevant																															
Information																															
Balancing Test Model Runs																													1		
Selection of Model Runs and	Γ																														
Metrics for Evaluation																															
Review of Model Run Results																															
Draft Explanatory Report	Γ																														
Development							1																								
Propose DFC(s) for Adoption													[٦
(Deadline May 1, 2021)																															
Proposed Meeting Dates	_	*		ķ	*		*		*		*			*		*		*		*		*		*			*				

